
1 
 

PID Control:    
A brief introduction and guide, using Arduino. 

(SWR  26 Sep 2011) 
 
Overview:  PID (Proportional, Integral, Derivative) control is a widely-used method to achieve 
and maintain a process set point. The process itself can vary widely, ranging from temperature 
control in thousand gallon vats of tomato soup to speed control in miniature electric motors to 
position control of an inkjet printer head, and on and on.  While the applications vary widely, the 
approach in each case remains quite similar. The PID control equation may be expressed in 
various ways, but a general formulation is:  
 

Drive = kP*Error + kI*Σ Error  + kD * dP/dT 
 

where Error is the difference between the current value of the process variable (temperature, 
speed, position) and the desired set point, usually written as Error = (Value-SetPoint);  
ΣError is the summation of previous Error values; and dP/dT is the time rate of change of the 
process variable being controlled, or of the error itself. The proportional coefficient kP, the 
integral coefficient kI, and the derivative coefficient kD are gain coefficients which tune the PID 
equation to the particular process being controlled. Drive is the total control effort (often a 
voltage or current) applied to actuators (heater, motor, valve) to achieve and hold the set point. 
 
Tuning methods:  Not all of the terms in the PID equation are necessarily used. Fitting the PID 
approach to a particular control problem involves tuning; deciding which terms to include, and 
determining what the gains should be for those terms. The Wikipedia page      
http://en.wikipedia.org/wiki/PID_controller  presents the basic PID approach and outlines some 
tuning methods. Although there are analytical approaches, rules of thumb, and specialized 
software among other methods for selecting gain coefficients, the gains are often arrived at, 
particularly in small model systems, by observing the actual response of the process to a 
particular set of coefficients and adjusting them until good control is achieved. 
 
Coding a PID control algorithm:  Code for a PID system can be rather simple. The following is 
an example of some pseudocode to do PID: 
 
PID: 
     Error = Setpoint - Actual 
     Integral = Integral + (Error*dt) 
     Derivative = (Error - Previous_error)/dt 
     Drive = (Error*kP) + (Integral*kI) + (Derivative*kD) 
     Previous_error = Error 
     wait(dt) 
GOTO PID 
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This pseudocode is not written in any particular computer language or for any particular 
microcontroller, but does lay out the basic logical steps to achieve control using the PID 
approach. It also leaves out a few details which usually need to be included depending on the 
particular control problem and the particular controller being used. 
 
The program code shown below is written in the C-like Arduino language which you can use as 
a guide to developing your own PID function. You must define the variables and pin numbers for 
the position potentiometer (Position), motor drive pin (Motor), and motor direction pin 
(Direction).  
 
//-------------------- Calculates the PID drive value  --------------------    
      Actual = analogRead(Position); 
      Error = SetPt - Actual; 
       
      if (abs(Error) < IntThresh){          // prevent integral 'windup' 
         Integral = Integral + Error;       // accumulate the error integral 
      } 
      else { 
         Integral=0;         // zero it if out of bounds  
      }    
      P = Error*kP;                         // calc proportional term 
      I = Integral*kI;                      // integral term 
      D = (Last-Actual)*kD;                 // derivative term 
      Drive = P + I + D;                    // Total drive = P+I+D 
      Drive = Drive*ScaleFactor;            // scale Drive to be in the range 0-255    
      if (Drive < 0){                       // Check which direction to go.    
         digitalWrite (Direction,LOW);      // change direction as needed      
      } 
      else {                                //   depending on the sign of Error 
         digitalWrite (Direction,HIGH); 
      }   
      if (abs(Drive)>255) { 
         Drive=255; 
      } 
      analogWrite (Motor,Drive);            // send PWM command to motor board 
      Last = Actual;                        // save current value for next time 
} 

 
PWM value: The value for the PWM duty cycle parameter in the analogWrite() instruction 
above must be an integer in the range 0-255. So, as you calculate the sum of the P,I, and D terms 
you need to scale the final Drive value to fit into the 0-255 range.   
 
Integral term:  Use of the integral term can be problematic. In PID control systems there is a 
problem referred to as “windup”, which occurs as follows. The integral term sums the error 
history over time. If a system starts far from the final desired set point, the initial errors will be 
large, and the integral term will quickly grow very large. This accumulated integral usually 
produces a dominating effect which prevents the system from quickly achieving the set point. To 
avoid this problem, a number of methods have been employed. The scheme shown in the code 
above is to “zero out” the integral term unless the error is sufficiently small. Specifically, the test 
here is to check if the current error is less than some test value. In the code above the test value is 
called IntThresh. Including this test allows the integral term to operate only after the system has 
approached close to the final set point. The integral term then acts to remove any small residual 
error so that the system may converge to the final set point. 
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Tuning:  As mentioned earlier, the process of determining appropriate values for the gain 
coefficients kP, kI, and kD refers to “tuning” the system. A simple empirical approach is to start 
by zeroing the integral and derivative gains, and just use the proportional term. Setting the 
proportional gain increasingly higher will finally cause the system to oscillate. This is bad 
behavior; don’t allow it to continue. Reduce the proportional gain until you are just below the 
point of incipient oscillation. You can then try bringing up the derivative gain, which should act 
to forestall the start of oscillatory behavior. And finally adding a small amount of integral gain 
may help bring the system to the final set point.  
 
The best coefficients for a given control system depend on the goals of the system. Bringing a 
subway train smoothly up to speed with no oscillations or overshoot is one goal; rapidly 
achieving a set point where some overshoot and oscillations are an acceptable tradeoff for fast 
response is a different goal. Different control goals require different tunings.                
 
 
 

Motor Driver Usage 
 
Connections: The motor board plugs directly onto the Arduino stacking connectors. You will 
attach your motor(s) to the two screw terminals labeled “Coil A” and “Coil B” on the motor 
board. You will also connect power for the motors at the screw terminal labeled “8V-30V” and 
“GND”. This motor-power connection only powers the motor board, and is separate from the 
Arduino board power supply. The Arduino board itself can be powered either by a USB 
connection to a computer, or by a separate DC power source plugged into the circular DC power 
connewctor on the Arduino.    
 
Connections to the motor board are shown in the diagram below: 
 
  
 
 
 
 
 
 
 
 
 
 
 
 
When making your connections BE SURE to get the correct polarity on the 12V DC connector. 
If you reverse the connection the motors will not run, and you may possibly burn something on 
the motor board. 
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The four outputs can each source a maximum current of about 2 amps max, and for continuous 
duty at the full current a heat sink and/or cooling fan would be required to prevent components 
from overheating. However, in our application the full current will typically only be used for 
short periods as the control system drives the motor toward the set point, so overheating 
shouldn’t be a problem. Once near the set point (and this should take only a few seconds) the 
motor current will drop to low values. Assuming of course that there are no bugs in your 
software.   
 
The instruction sequence for sending a command to the motor driver is:  
 
 digitalWrite(dirpin,value);   // set direction 
 analogWrite(motor,drive);     // send PWM command 

 
The default pin Arduino assignments for the motor driver are: 
 
 Pin 3:  PWM for motor A  
 Pin 12: direction for motor A 
 Pin 11: PWM for motor B 
 Pin 13 : direction for motor B 
 
An example command would be: 
 
 digitalWrite(12,LOW);    // set direction motor A  
 analogWrite(3,117);     // send PWM command motor A  
 
Note that 0 or 1 can be substituted for LOW or HIGH, respectively, in the direction instruction. 
Also, the PWM parameter must be 0-255, which maps to a percent duty cycle of 0-100%. PWM 
values outside the 0-255 range will produce incorrect behavior. In the example above the PWM 
value of 117 corresponds to a duty cycle of 117/255 = 46%. In addition, program readability can 
often be improved by using names for the pin numbers with the #define construct near the top 
of your program, i.e., #define PWMA = 12, after which you could write 
digitalWrite(PWMA,LOW). Or even   digitalWrite(PWMA,0). 
 
Note also that in the Arduino compiler the PWM frequency cannot be readily changed from the 
default value of 490 Hz. To change the PWM frequency the internal TCCRxB register must be 
modified. The “x” refers to the particular internal timer (0, 1, or 2) controlling the PWM pin you 
are using. Refer to the Barrett book for details. For our use with motors the 490 Hz works OK, 
but for some other applications other frequencies may work better. Although the Arduino Uno 
has 6 PWM channels, the internal timer 0 used for the PWM channels on pins 5 and 6 is also 
used for the  milli() and other timing functions. If you change the frequency on timer 0 from 
the default 976.56 Hz these timing functions will give incorrect results.  
 
 

 
Data Logging 

 



5 
 

Optimizing the performance of your system requires that you capture performance data for 
analysis so that you can quantify effects of hardware and software changes. These will be the 
data with which you justify any design changes in the quest for system optimization and 
improved performance.  
 
To capture the motor-drive performance information your program can output data over the USB 
port using the Serial.print instruction. You can include this instruction in your control loop to 
observe intermediate control values, such as the current potentiometer voltage, as your system 
proceeds toward achieving a set point. This will give you a time course of position which you 
can then analyse for velocity and acceleration behavior to quantify the motor control dynamics.  
 
The serial output data can be captured using the built-in serial terminal facility of the Arduino 
development environment. Under the Tools pulldown menu select Serial Monitor. When the 
serial monitor opens, in the lower right-hand corner select the correct baud rate (the 
communications transfer rate) to agree with the rate you specified in the 
Serial.begin(baudrate) instruction in your program. Selecting a baud rate of 115200 will 
give you quick data transfers. When your data run is complete you can copy/paste the data 
displayed in the Serial Monitor window into an Excel spreadsheet or other program for graphing 
and analysis. 
 
Here’s an outline of how to set up the serial data transfer: 
 
float value1 = 1.234, value2 = 2.345, value3=3.456; // set up some test values 
float value4 = 4.567, value5 = 5.678; 
 
void setup() { 
   Serial.begin(115200);          // set the communications rate  
} 
 
void loop() { 
   Serial.print(millis()); Serial.print(",");        // print time and a comma 
   Serial.print(value1,4); Serial.print(",");       // print value and a comma  
   Serial.print(value2,4); Serial.print(","); 
   Serial.print(value3,4); Serial.print(","); 
   Serial.print(value4,4); Serial.print(","); 
   Serial.println(value5,4);          // final value and newline   
} 

The first value printed (millis() function) will be the number of milliseconds since the Arduino 
was last reset. This will give you a time base for your data. The optional “4” in the 
Serial.print  instruction specifies how many digits to the right of the decimal to print. 
Notice that the final “value5” is printed using the println version of the Serial.print 
instruction. This appends a final character (called “carriage return” or “newline”) to the end of 
your series of output values such that a series of output rows will be produced, each row 
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containing the time stamp and the 5 data points. Each value in a row will be delimited by a 
comma to format the data for importing into Excel or other analysis program. 

 
 

PWM Frequency Control – Arduino Uno 
 
There are 6 PWM channels available. The instruction to produce PWM output is 
analogWrite(pin,Duty), where pin must be 5,6,9,10,11,or 3, and Duty is the duty cycle, entered 
as 0-255 corresponding to 0-100%. The default PWM frequency is 490 Hz.  
 
To change the frequency an additional instruction is required. The PWM frequency is controlled 
by three internal timers:  timer0, timer1, and timer2. The instruction to change the PWM 
frequency is  TCCRnB = (TCCRnB & 0xF8)  |  i   where i is chosen depending on which timer 
is associated with the PWM pin whose frequency you want to change.  Note that the PWM pins 
are associated in pairs with the same timer. Thus if you change the PWM frequency for pin 9, 
you will get the same frequency for PWM on pin 10. However the duty cycles can be different 
on the two pins. The table below summarizes the options available. 
 
Timer0        (TCCR0B for pins 5 and 6)  Timer1        (TCCR1B for pins 9 and 10)  
i = 1 freq =  62500 Hz    i = 1 freq =  31250 Hz  
    2   7812         2   3906 
    3    976         3    488 
    4    244         4    122 
    5     61         5     30 
 
Timer2       (TCCR2B for pins 3 and 11) 
i = 1 freq =  31250 
    2   3906 
    3    980 
    4    490 
    5    245 
    6    122 
    7     30 
 

Example frequency change instruction:     TCCR2B = (TCCR2B & 0xF8) | 2 
      (sets PWM pins 3 and 11 for 3906 Hz)  

Example program: 
 
void setup() 
{ 
  pinMode(3,OUTPUT);              //make pin 3 an output 
  TCCR2B=(TCCR2B&0xF8) | 2;       //set PWM frequency to 3906 Hz for pin 3 (and 11) 
} 
void loop() 
{ 
  analogWrite(3,127);             //do 50% PWM on pin 3 at the frequency set in TCCR2B 
} 
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In general you should avoid changing the PWM frequency on pins 5 and 6 since they use timer0, 
which controls the delay and milli functions. These functions will return incorrect results if 
the frequency of timer0 is changed from the default. The factor 0xF8 is a mask so that you only 
affect the bits for the frequency in the TCCRnB register when OR-ing with the  |  operator.   
      

 

 

 
Below is a “textbook” example of a control system response to a step change in the set point, 
showing some typical ways of characterizing the response. 
 
 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Here we would say the steady-state response is achieved in about 1.5 seconds with an initial rise 
time of around 150 milliseconds and a 30% initial overshoot. If objectionable, the remaining 
steady-state error might be “cured” by adding some integral action 
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